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   Methods cont’d

Network analysis

After thresholding, the  resulting binary graphs of PDC matrices can be characterised 
using graph-theoretic measures. Global network measures include:

 1. Mean-degree    2. Mean clustering-coe�cient    3. Global e�ciency

Local  measures for each sensor include:

 1. Degree      2. Clustering coe�cient      3. Local e�ciency

Since these measures abstract away from type of data, they can be compared to 
those measured for RSNs of other neuro-imaging modalities, such as fMRI, or to 
those derived from simulations of network change, eg. in ageing.

Data

We applied the method to 8.5 min of resting-state data sampled at 1 kHz from 204 
planar gradiometers in 24 young (18-38) and 24 older (68-88) subjects. These data 
are part of the Cam-CAN project (www.cam-can.org), which will eventually have 
datasets from 700 people between 18 to 88 years of age.  t-tests were used to 
compare network measures for young versus older participants, with Random Field 
Theory (RFT) being used to correct for multiple comparisons on local network 
measures. While binary PDC matrices were calculated for 6 common frequency 
bands, we present results here for just the delta band (1-4 Hz).
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This work describes a novel pipeline for estimating resting-state networks of 
signi�cant e�ective connectivity between MEG (or EEG) sensors. The pipeline was 
used to reveal an e�ect of age on the network metrics of clustering coe�cient and 
e�ciency over left parietal sensors. 

Future work will explore these age e�ects parametrically in the larger Cam-CAN 
sample, and relate them to the same measures on resting-state fMRI data from the 
same sample and to simulations of how ageing might a�ect functional interactions 
between brain regions.
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Measuring effective connectivity in resting-state MEG using 
PDC: Effect of ageing in the Cam-CAN project
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Background

 

There is growing interest in the networks of activity in the human brain at rest, eg. in 
terms of graph-theoretic properties that distinguish normal from pathological brain 
states. Such resting-state networks (RSNs) are often de�ned from fMRI, but this 
methodology cannot detect coherent activity above ~0.1Hz. Magnetoencephalo- 
graphy (MEG), on the other hand, can detect coherent networks at much higher 
frequencies, but is subject to a number of technical challenges. 

First, the signal is contaminated with artifacts of both environmental and biological 
origin. Second, the spread of the magnetic �eld as it travels from the cortex to MEG 
sensors results in spurious dependencies between sensors. Third, �nding a statistically 
signi�cant level of connectivity using surrogate data is computationally infeasible.  

Here, we describe an MEG analysis pipeline that overcomes these problems, using 
multivariate autoregressive modelling to characterise time-lagged, directed 
dependencies between sensors. We demonstrate the use of this pipeline to detect 
di�erences in graph-theoretic properties of RSNs in young and older participants.

1. Pre-processing to remove noise

Signal Space Separation (SSS) is used to remove environmental noise. A spherical 
harmonic decomposition allows the magnetic �elds arising within the sphere 
enclosed by the hemispherical MEG sensor-array (which include brain signals) to 
be separated from those arising from outside the sphere (which re�ect 
environmental noise). This decomposition is also used to transform sensor-data 
from each subject to a standard head position, thereby obviating the need to 
solve the ill-posed problem of projecting the data to source space. 

To remove artifacts of biological origin arising from within the sensor-array, 
Independent Component Analysis (ICA) is used to maximise the statistical 
independence between temporal components. Bootstrapping is then used to 
identify components that correlate signi�cantly with the data recorded by ocular 
(EOG) and cardiac (ECG) electrodes, and these are projected out of MEG data.

2. MultiVariate AutoRegressive Modelling (MVAR)

The pre-processed data are modeled as a MVAR process:

where           are the time series for each of the       sensors,      is the time lag (up to 
model order    ),          are the model parameters to be estimated and             is 
assumed to be white noise. Information criteria are used to de�ne the model 
order and the model assumptions are validated. Note that, because the MVAR 
measures time-lagged dependencies between sensors (    >=1), these 
dependencies cannot be an artifact of magnetic �eld spread, which would be 
instantaneous (    =0). 

3. Estimating signi�cant e�ective connectivity

We used Partial Directed Coherence (PDC) [1] to provide a frequency-speci�c 
measure of e�ective connectivity. PDC gives a normalised measure of  “out�ow” 
from a sensor:

where           is the Fourier transform of the MVAR coe�cient matrix at frequency  
. The statistical reliability of the PDC between each pair of sensors (for a given 
frequency band) is then estimated using an analytic threshold:

where       is the inverse of covariance matrix of the MVAR process and      is the 
number of samples. Here, we use a Bonferroni-corrected threshold of 
    =0.05/(M*(M-1)).
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The young and older group did not di�er signi�cantly in terms of model order (so a 
�xed value of P=23 was used below), model �t, or mean autoregressive parameters. 
Nor did they di�er in their global network properties.

For the local network measures however, there was a cluster of left parietal sensors 
that showed a higher clustering coe�cient and higher local e�iciency for older than 
younger groups (correcting for multiple comparisons across sensors).


